Structural Chemistry of Magnéli Phases Ti_nO_{2n-1} (4 $\leq n \leq 9$)

IV. Superstructure in Ti₄O₇ at 140 K*

Y. LE PAGE

Solid State Chemistry, National Research Council, Ottawa, Canada, KIA OR9

AND M. MAREZIO

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, 166 X-38042 Grenoble Cedex, France

Received April 25, 1983; in revised form September 26, 1983

The structure of $T_{i_4}O_7$ was reexamined at 298, 140, and 115 K. The room-temperature and the 115 K structures are essentially as previously reported. Two new observations were made: a considerable cell-parameter change at the lower transition with a 0.3% increase in cell volume on cooling and the existence of a fivefold superstructure at 140 K only. The 140 K phase with cell parameters a=6.918(1), b=11.142(2), c=15.127(3) $\alpha=90.64(1)$, $\beta=92.79(1)$, $\gamma=91.45(1)$ in space group P 1 corresponds to long-range order of the Ti valences. It shows alternate T_i^{3+} and T_i^{4+} slabs parallel to $(1\ 0\ 2)$ and a few valences with intermediate values at the contact between the slabs with the overall appearance of a modulated structure. Pairing of T_i^{3+} ions is observed. Similar to $T_{i_6}O_{11}$, expansion and contraction of the T_i — T_i distances in the rutile-like chains is correlated with the electrostatic repulsion of the T_i ions so that the T_i slabs are on the whole contracted along C_{rutile} while the T_i slabs are expanded. The previous interpretation of the 140 K phase as a "liquid of bipolarons" should therefore be revised.

Introduction

The low temperature behavior of the homologous compounds Ti₄O₇ and Ti₆O₁₁ are strikingly similar, with two transitions each at comparable temperatures (1). The structure of Ti₄O₇ was studied at 298, 140, and 120 K and the Ti valences were interpreted to be disordered at 298 K, short-range ordered at 140 K, and ordered at the lowest temperature (2) with pairing of Ti³⁺ ions. Comparison of structural, magnetic and ESR results led to interpret the intermedi-

ate temperature phase as a "liquid of bipolarons" (3). A structural study of Ti_6O_{11} at 298, 130, and 115 K (4-6) found disordered Ti valences at room-temperature and nearly complete order in two different superstructures at the other temperatures. These recent results prompted us to verify the reported absence of superstructures in Ti_4O_7 , Ti_5O_9 , as well as in the corresponding vanadium oxides. This paper reports the structural studies on pure Ti_4O_7 single crystals.

Experimental

13

The experimental technique follows closely that of (5). The index RT indicates

^{*} Issued as NRCC 23107.

the room-temperature cell of (7). Oscillation patterns about [100]_{RT}, [010]_{RT}, and $[111]_{RT}$ were performed at 115, 140, and 298 K with graphite-monochromatized $MoK\alpha$. At 140 K only, extra layers of reflections could be seen, indicating the presence of a superstructure with fivefold multiplication of the primitive unit cell volume. Diffractometer examination of the reflections showed the cell based on the reciprocal vectors $[(\mathbf{a}^* - 2\mathbf{b}^* + \mathbf{c}^*)/5, (\mathbf{a}^* - \mathbf{b}^*), (\mathbf{a}^* +$ **b***)]_{RT} to be primitive. The corresponding primitive reduced direct cell at intermediate temperature (IT) has the unit vectors [a, b, $[\mathbf{c}]_{IT} = [(-3\mathbf{a} - \mathbf{b} + \mathbf{c})/2, (-2\mathbf{a} - \mathbf{b}), (-\mathbf{a} - \mathbf{b})]$ (5b + c)/2_{RT}. This cell is used throughout the structural study of the 140 K phase. The

intensity measurement technique is the same as in (5). The specifics of the present data collection are listed in Table I together with the cell parameters obtained by least-squares refinement of about 20 intense single-crystal reflections with 2θ around 115°. The large number of unobserved reflections stems from the peculiar intensity modulation that can be seen on the $[100]_{RT}$ = [121]_{IT} oscillation pattern and on the structure factor table: while reflections for which the sum $[h + 2k - l]_{IT}$ is 5n are substructure reflections, the reflections for which it is $5n \pm 1$ are fairly strong superstructure reflections, and those for which it is $5n \pm 2$ are systematically weak with a large proportion of unobserved intensities.

TABLE I

Data Collection Parameters

	298 K	140	115 K	
		Cell	Subcell	
<i>a</i> (Å)	5.597(1)	6.918(1)	5.597(1)	5.626(1)
$b(\mathring{A})$	7.125(1)	11.142(2)	7.132(1)	7.202(1)
$c(\mathring{A})$	20.429(5)	15.127(3)	20.364(5)	20.260(4)
α (°)	67.70(1)	90.64(1)	67.76(1)	67.90(1)
β (°)	57.16(1)	92.79(1)	57.44(1)	57.69(1)
y (°)	108.76(1)	91.45(1)	109.02(1)	109.68(1)
$V(\mathring{A}^3)$	465.25	1164.15	465.64	467.20
Space group	$I\overline{1}$	$P\overline{1}$	$I\overline{1}$	$I\overline{1}$
Subcell-to-cell		$1-\frac{3}{2}$	$-\frac{1}{2}$ $\frac{1}{2}$	
transformation		-2	$ \begin{array}{ccc} -\frac{1}{2} & \frac{1}{2} \\ -1 & 0 \\ -\frac{5}{2} & \frac{1}{2} \end{array} $	
		$-\frac{1}{2}$	$-\frac{5}{2}$ $\frac{1}{2}$	
Radiation	$MoK\alpha$	· M	oKα	MoKα
2θ range (°)	80		50	80
Total number of measurements	3146	4	112	3211
Reflections				
Independent	2896	4	112	2910
Observed	2064		220	2649
Unobserved	832	-	892	261
Crystal shape	652	Broken with faces,		2 mm
Absorption				
correction	Gaussian	Gaus	sian	Gaussian
$\langle \Delta I \rangle / \langle I \rangle$	0.010	=	_	0.011
R_{Fobs}	0.024	0	.044	0.021
wR _{Fobs}	0.033	0	.036	0.026
Parameter	101		222	101

Such an intensity distribution is reminiscent of the satellite reflections observed in "modulated structures" (8) but the present case is truly a fivefold superstructure with sharp reflections.

Origin and Nomenclature

The row along \mathbf{b}_{RT} is $[2\overline{12}]_{IT}$ with a period of $5\ \mathbf{b}_{RT}$. This is similar to Ti_6O_{11} at 130 K where the period along \mathbf{b}_{RT} was tripled in a threefold superstructure. Three and five being both odd numbers, the reasoning in (5) about origin selection applies here and the middle of a segment of type 1 can be selected to be the origin. The choice of the motif and the nomenclature as shown on Fig. 1 also follows (5). The three indices attached to each atom, respectively, correspond to an arbitrary numbering of the atoms in the rutile cell, the number of $\mathbf{c}_{\text{rutile}}$ and \mathbf{b}_{RT} translations applied to it.

Structure Solution and Refinement of the 140 K Phase

The structure solution method applied here is justified in (5). The substructure reflections with h + 2k - l = 5n and the superstructure reflections were rescaled separately so that $\langle E^2 \rangle$ was 1.0 for both families of reflections. From the input of 20 known substructure phases, the MULTAN program (9) proposed a set of phases which corresponded to a distortion of the Ti array that was used to initiate the block-diagonal least-squares refinement with counting statistics weights. The above mentioned modulation of the superstructure intensities provoked refinement problems (unacceptably low and high thermal parameters) if observed reflections only were used. These problems vanished when all measurements were included and refined with unit weights. The final cycles were with full matrix and isotropic thermal motion. The final

		X	Y	Z	BEG	
	TI 11	0.02005(14)	0.02026(10)	0.06617(4) 0.46(3	3)
	TI 12	0.08430(14)	0.03970(10)	0. 20133(4) 0.48(3	3)
	TI 21	0.02777(14)	0.52717(10)	0.06279(4) 0.47(3	3)
	TI 22	0.07998(14)	0. 53775(10)	0. 20114(4) 0.45(3	3)
	0 11	0. 9119 (6)	0.6607 (4)	0.13898(15) 0.51(14	4)
	0 20	0.0623 (6)	0.3324 (4)	0.01525(16) 0.59(1	5)
	0 21	0.0341 (6)	0.3165 (4)	0.16423(15) 0.47(14	4)
	0 31	0.6115 (6)	0.8335 (4)	0.08140(16) 0.62(14	4)
	0 32	0. 6238 (6)	0.8428 (4)	0. 22382(:	15) 0.51(1	5)
	D 40	0.4138 (6)	0.1768 (4)	0.05780(16) 0.62(1	5)
	0 41	0.4423 (6)	0. 1729 (4)	0.19843(15) 0.55(1	5)
	U11(U)	U22	U33	U12	U13	U23
TI 11	0. 605(18)	0.592(19)	0. 587(17)	0.418(16)	-0. 466(16)	-0. 395(16)
TI 12	0.592(18)	0.586(19)	0.667(17)	0.415(16)	-0.482(16)	-0. 421(16)
TI 21	0.607(18)	0.600(19)	0.569(17)	0.412(17)	-0.452(16)	-0.385(17)
TI 22	0.507(17)	0.532(18)	0.601(17)	0.343(16)	-0.408(16)	-0.374(16)
0 11	0.73 (B)	0, 63 (B)	0.66 (7)	0.47 (7)	-0.55 (7)	-0.46 (7)
0 20	0.97 (B)	0.75 (8)	0.88 (8)	0.65 (7)	-0.77 (7)	-0.60 (7)
	0.61 (8)	0.5B (7)	0.61 (7)	0.41 (7)	-0.49 (7)	-0.38 (7)
0 21			0.69 (7)	0.39 (7)	-0.46 (7)	-0.47 (7)
0 31	0.59 (8)	0.80 (B)	U. 07 (/)			
0 31 0 32			0.59 (7)	0.40 (7)	-0.46 (7)	-0.39 (7)
0 31	0.59 (8)	0.62 (8) 0.81 (8)				

Note. BEQ is the arithmetic mean of the principal axes of the thermal ellipsoid. Estimated standard deviations refer to the last digit printed.

TABLE IIb Atomic Parameters X, Y, Z and BEQ at 140 K

Tillo	 			•	
T1120 0. 36482(19) 0. 68023(11) 0. 03975(9) 0. 36 (3) T1210 0. 32087(18) b. 80133(11) 0. 80420(8) 0. 102(25) T1220 0. 42806(19) 0. 42227(11) 0. 15872(8) 0. 23 (3) T1111 0. 47681(19) 0. 30061(12) 0. 39128(9) 0. 23 (3) T1121 0. 24394(18) 0. 52828(12) 0. 35128(9) 0. 31 (3) T1121 0. 24394(18) 0. 41056(11) 0. 58989(8) 0. 135(24) T1221 0. 04298(19) 0. 42298(12) 0. 56013(9) 0. 41 (3) T1112 0. 07976(19) 0. 50910(12) 0. 78935(9) 0. 39 (3) T1112 0. 07976(19) 0. 50910(12) 0. 78935(9) 0. 39 (3) T1122 0. 15914(18) 0. 28302(12) 0. 00537(9) 0. 46 (3) T1122 0. 35442(19) 0. 18370(12) 0. 00537(9) 0. 46 (3) T1123 0. 43731(18) 0. 29714(12) 0. 00537(9) 0. 26 (3) T1123 0. 43731(18) 0. 92956(11) 0. 15950(8) 0. 17 (3) T1123 0. 51662(18) 0. 19888(12) 0. 60592(9) 0. 28 (3) T1223 0. 22914(18) 0. 02455(11) 0. 15950(8) 0. 17 (3) T1124 0. 04657(19) 0. 12182(12) 0. 56003(9) 0. 41 (3) T1124 0. 07451(19) 0. 12182(12) 0. 56003(9) 0. 41 (3) T1124 0. 07451(19) 0. 78145(11) 0. 59004(8) 0. 13(25) T1124 0. 07451(19) 0. 78145(11) 0. 23499(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23499(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23499(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23499(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23499(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23499(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 59004(8) 0. 13(25) T124 0. 07451(19) 0. 0762(12) 0. 79180(9) 0. 31 (3) T1254 0. 15333(19) 0. 78145(11) 0. 59004(8) 0. 213(25) T1121 0. 3285 (7) 0. 3139 (4) 0. 9441 (3) 0. 49 (8) 0. 200 0. 1613 (7) 0. 8871 (4) 0. 8849 (3) 0. 52 (8) 0. 210 0. 4254 (7) 0. 6960 (4) 0. 9118 (3) 0. 35 (8) 0. 320 0. 6059 (7) 0. 2708 (4) 0. 8345 (3) 0. 34 (8) 0. 310 0. 3617 (7) 0. 4752 (5) 0. 8035 (3) 0. 69 (8) 0. 111 0. 7578 (8) 0. 6677 (5) 0. 4026 (3) 0. 53 (8) 0. 321 0. 0.1026 (7) 0. 1096 (4) 0. 1139 (3) 0. 42 (8) 0. 211 0. 8188 (7) 0. 4973 (5) 0. 4026 (3) 0. 53 (8) 0. 321 0. 0.1436 (7) 0. 8773 (5) 0. 4032 (3) 0. 54 (8) 0. 312 0. 0.498 (7) 0. 4973 (5) 0. 4032 (3) 0. 54 (8) 0. 313 0. 5288 (7) 0. 7975 (4) 0. 8896 (3) 0. 54 (8)		X	Y	Z	BEG
T1120 0. 36482(19) 0. 68023(12) 0. 03975(9) 0. 36 (3) T1210 0. 32087(18) 0. 80133(11) 0. 80420(8) 0. 102(25) T1220 0. 42806(19) 0. 42227(11) 0. 15872(8) 0. 23 (3) T1111 0. 47681(19) 0. 30061(12) 0. 39128(9) 0. 23 (3) T1121 0. 24394(18) 0. 52828(12) 0. 35849(8) 0. 24 (3) T1211 0. 27468(18) 0. 41056(11) 0. 58989(8) 0. 135(24) T1221 0. 04298(19) 0. 62298(12) 0. 56013(19) 0. 41 (3) T1112 0. 07976(19) 0. 50910(12) 0. 76935(9) 0. 39 (3) T1112 0. 0.7976(19) 0. 59910(12) 0. 76935(9) 0. 39 (3) T1122 0. 15914(18) 0. 28022(12) 0. 00537(9) 0. 46 (3) T1122 0. 35442(19) 0. 18370(12) 0. 00537(9) 0. 46 (3) T1123 0. 3731(18) 0. 27974(12) 0. 00537(9) 0. 46 (3) T1123 0. 43731(18) 0. 27974(12) 0. 18045(9) 0. 29 (3) T1123 0. 51662(18) 0. 19888(12) 0. 60592(19) 0. 28 (3) T1223 0. 22914(18) 0. 92756(11) 0. 15950(8) 0. 17 (3) T1124 0. 07451(19) 0. 02455(11) 0. 35805(8) 0. 20 (3) T1124 0. 07451(19) 0. 12182(12) 0. 56003(9) 0. 41 (3) T1124 0. 07451(19) 0. 071845(11) 0. 32069(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23699(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23699(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23699(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23699(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23699(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23699(8) 0. 26 (3) T1224 0. 15333(19) 0. 78145(11) 0. 8849 (3) 0. 52 (8) 0. 200 0. 1613 (7) 0. 8871 (4) 0. 8849 (3) 0. 52 (8) 0. 210 0. 4254 (7) 0. 6960 (4) 0. 9118 (3) 0. 35 (8) 0. 300 0. 3017 (7) 0. 4752 (5) 0. 8039 (3) 0. 40 (8) 0. 310 0. 3617 (7) 0. 4752 (5) 0. 8039 (3) 0. 40 (8) 0. 310 0. 3617 (7) 0. 4752 (5) 0. 8034 (3) 0. 35 (8) 0. 320 0. 6059 (7) 0. 2708 (4) 0. 8345 (3) 0. 34 (8) 0. 310 0. 3618 (7) 0. 4752 (5) 0. 6058 (3) 0. 697 (8) 0. 311 0. 7578 (8) 0. 6674 (5) 0. 6058 (3) 0. 697 (8) 0. 311 0. 7578 (8) 0. 6674 (5) 0. 6432 (3) 0. 51 (8) 0. 311 0. 7578 (8) 0. 6674 (5) 0. 6432 (3) 0. 51 (8) 0. 312 0. 6058 (7) 0. 6067 (5) 0. 6058 (3) 0. 607 (8) 0. 313 0. 5288 (7) 0. 6073 (4) 0. 6058 (3) 0. 60 (8) 0. 313 0. 6588 (7) 0. 6073 (4) 0. 6058 (3) 0. 60 (8)	T1110	0.13374(18)	0.89397(11)	0.00613(8)	0.095(24)
T1210 0. 32087(18) b. 80133(11) 0. 80420(8) 0. 102(25) T1220 0. 42806(19) 0. 4227(11) 0. 15972(8) 0. 23 (3) T1111 0. 47681(19) 0. 30061(12) 0. 39128(9) 0. 33 (3) T1121 0. 24394(18) 0. 52828(12) 0. 39849(8) 0. 24 (3) T1121 0. 27468(18) 0. 41054(11) 0. 55989(8) 0. 135(24) T1221 0. 04298(19) 0. 62298(12) 0. 56013(9) 0. 41 (3) T11122 0. 07976(19) 0. 50910(12) 0. 78935(9) 0. 39 (3) T11122 0. 15914(18) 0. 28302(12) 0. 23984(8) 0. 25 (3) T1122 0. 15944(19) 0. 39132(12) 0. 23984(8) 0. 25 (3) T1123 0. 32217(18) 0. 29714(12) 0. 00537(9) 0. 46 (3) T1113 0. 32217(18) 0. 29714(12) 0. 00737(8) 0. 26 (3) T1113 0. 32217(18) 0. 29794(12) 0. 00537(9) 0. 46 (3) T1123 0. 43731(18) 0. 29794(12) 0. 00537(9) 0. 26 (3) T1124 0. 51662(18) 0. 19888(12) 0. 60592(9) 0. 29 (3) T1114 0. 27945(18) 0. 90733(11) 0. 35805(8) 0. 20 (3) T1114 0. 07451(19) 0. 12182(12) 0. 56003(9) 0. 41 (3) T124 0. 07451(19) 0. 00762(12) 0. 79180(9) 0. 21 (3) T124 0. 07451(19) 0. 00762(12) 0. 79180(9) 0. 21 (3) T124 0. 15333(19) 0. 78145(11) 0. 23697(8) 0. 26 (3) T124 0. 15333(19) 0. 78145(11) 0. 23697(8) 0. 26 (3) T124 0. 15333(19) 0. 78145(11) 0. 23697(8) 0. 26 (3) T124 0. 15333(19) 0. 78145(11) 0. 23697(8) 0. 26 (3) T124 0. 15333(19) 0. 78145(11) 0. 23697(8) 0. 26 (3) T124 0. 15333(19) 0. 78145(11) 0. 23697(8) 0. 26 (3) T124 0. 15333(19) 0. 78145(11) 0. 23697(8) 0. 26 (3) T124 0. 15333(19) 0. 78145(11) 0. 23697(8) 0. 26 (3) T126 0. 0. 1613 (7) 0. 8871 (4) 0. 8849 (3) 0. 52 (8) 0. 210 0. 4254 (7) 0. 6960 (4) 0. 8145 (3) 0. 52 (8) 0. 210 0. 4554 (7) 0. 6960 (4) 0. 8145 (3) 0. 52 (8) 0. 310 0. 3617 (7) 0. 2708 (4) 0. 8345 (3) 0. 63 (8) 0. 320 0. 6059 (7) 0. 2708 (4) 0. 8345 (3) 0. 67 (8) 0. 311 0. 7578 (8) 0. 2714 (5) 0. 00017 (3) 0. 72 (7) 0. 410 0. 3356 (7) 0. 3130 (5) 0. 6682 (3) 0. 67 (8) 0. 411 0. 7384 (8) 0. 3130 (5) 0. 6682 (3) 0. 67 (8) 0. 411 0. 7384 (8) 0. 3130 (5) 0. 6682 (3) 0. 67 (8) 0. 412 0. 1430 (7) 0. 8875 (4) 0. 00031 (3) 0. 30 (8) 0. 322 0. 6409 (7) 0. 6773 (4) 0. 6037 (3) 0. 25 (8) 0. 313 0. 6288 (7) 0. 6775 (4) 0. 6037 (3) 0. 25 (8) 0. 313 0.					
T1220			1 1		
T1111		0.42806(19)	0.42227(11)	0.15872(8)	0.23 (3)
T1211		0.47681(19)	0. 30061 (12)	0.39128(9)	0.33 (3)
TI221	TI121	0. 24394(18)	0. 52828(12)	0. 35849(B)	0.24 (3)
T1112	TI211	0. 27468(18)	0.41056(11)	0. 58989(8)	0. 135(24)
T1122	T1221	0.04298(19)	0. 62298(12)	0. 56013(9)	0.41 (3)
T1212	TI112	0.07976(19)			
T1222					
T1113					
T1123					
TI213					
T1223					
T1114 0. 27745(18) 0. 90733(11) 0. 59004(8) 0. 213(25) T1124 0. 04657(19) 0. 12182(12) 0. 56003(9) 0. 41 (3) T1224 0. 15333(19) 0. 0762(12) 0. 79180(9) 0. 31 (3) T1224 0. 15333(19) 0. 78145(11) 0. 23699(8) 0. 26 (3) 0. 110 0. 3285 (7) 0. 3139 (4) 0. 9441 (3) 0. 49 (8) 0. 200 0. 1613 (7) 0. 8871 (4) 0. 8849 (3) 0. 52 (8) 0. 210 0. 4254 (7) 0. 6960 (4) 0. 9118 (3) 0. 35 (8) 0. 310 0. 3617 (7) 0. 4752 (5) 0. 8059 (3) 0. 63 (8) 0. 320 0. 6059 (7) 0. 2708 (4) 0. 8345 (3) 0. 34 (8) 0. 400 0. 0911 (8) 0. 7214 (5) 0. 0217 (3) 0. 72 (9) 0. 410 0. 3356 (7) 0. 5083 (5) 0. 0585 (3) 0. 67 (8) 0. 111 0. 7291 (7) 0. 1089 (5) 0. 5461 (3) 0. 55 (8) 0. 310 0. 5390 (8) 0. 6677 (5) 0. 4029 (4) 0. 87 (9) 0. 211 0. 8188 (7) 0. 4923 (4) 0. 5173 (3) 0. 42 (8) 0. 311 0. 7578 (8) 0. 2761 (5) 0. 4029 (4) 0. 87 (9) 0. 321 0. 0126 (7) 0. 0704 (4) 0. 4326 (3) 0. 53 (8) 0. 401 0. 4980 (8) 0. 5178 (5) 0. 6582 (3) 0. 67 (8) 0. 112 0. 1430 (7) 0. 4896 (5) 0. 6582 (3) 0. 71 (8) 0. 112 0. 1430 (7) 0. 4896 (5) 0. 0804 (3) 0. 67 (8) 0. 112 0. 1459 (7) 0. 2968 (4) 0. 1139 (3) 0. 42 (8) 0. 312 0. 1459 (7) 0. 2968 (4) 0. 1139 (3) 0. 45 (8) 0. 312 0. 1459 (7) 0. 2968 (4) 0. 1139 (3) 0. 45 (8) 0. 313 0. 5288 (7) 0. 2976 (4) 0. 2224 (3) 0. 59 (8) 0. 414 0. 1317 (7) 0. 4896 (5) 0. 0804 (3) 0. 60 (8) 0. 312 0. 1459 (7) 0. 2968 (4) 0. 1139 (3) 0. 45 (8) 0. 313 0. 5288 (7) 0. 2976 (4) 0. 2351 (3) 0. 59 (8) 0. 414 0. 1317 (7) 0. 8775 (4) 0. 0325 (3) 0. 47 (8) 0. 313 0. 5288 (7) 0. 2976 (5) 0. 6658 (3) 0. 59 (8) 0. 413 0. 5288 (7) 0. 7119 (5) 0. 7472 (3) 0. 52 (8) 0. 413 0. 5459 (7) 0. 6775 (4) 0. 6057 (3) 0. 52 (8) 0. 413 0. 5459 (7) 0. 6775 (4) 0. 6858 (3) 0. 54 (8) 0. 413 0. 5459 (7) 0. 6775 (4) 0. 6858 (3) 0. 54 (8) 0. 314 0. 9461 (7) 0. 6751 (5) 0. 6058 (3) 0. 54 (8) 0. 314 0. 9461 (7) 0. 6751 (5) 0. 2018 (3) 0. 56 (8) 0. 314 0. 9461 (7) 0. 6751 (5) 0. 2018 (3) 0. 56 (8) 0. 314 0. 9461 (7) 0. 6751 (5) 0. 2018 (3) 0. 56 (8) 0. 314 0. 9461 (7) 0. 6751 (5) 0. 2018 (3) 0. 57 (8)					
T1124					
T1214					
T1224					
0 110					
0 200					
0 210					
0 310					
0 320 0.6059 (7) 0.2708 (4) 0.8345 (3) 0.34 (8) 0 400 0.0911 (8) 0.7214 (5) 0.0217 (3) 0.72 (7) 0 410 0.3356 (7) 0.5083 (5) 0.0585 (3) 0.69 (8) 0 111 0.7291 (7) 0.1089 (5) 0.5461 (3) 0.55 (8) 0 201 0.5390 (8) 0.6877 (5) 0.4832 (3) 0.81 (7) 0 311 0.7578 (8) 0.2761 (5) 0.4029 (4) 0.87 (7) 0 321 0.0126 (7) 0.0704 (4) 0.4326 (3) 0.53 (8) 0 401 0.4980 (8) 0.5178 (5) 0.4226 (3) 0.53 (8) 0 411 0.7384 (8) 0.3130 (5) 0.6246 (3) 0.53 (8) 0 112 0.1430 (7) 0.9111 (4) 0.4149 (3) 0.71 (8) 0 202 0.9498 (7) 0.4896 (5) 0.6582 (3) 0.71 (8) 0 312 0.1459 (7) 0.4896 (5) 0.0804 (3) 0.40 (8) 0 322 0.9498 (7) 0.4896 (5) 0.0804 (3) 0.40 (8) 0 322 0.4449 (7)					
0 400					
0 410					
0 111					
0 201 0.5390 (8) 0.6877 (5) 0.4832 (3) 0.81 (9) 0 211 0.8188 (7) 0.4923 (4) 0.5173 (3) 0.42 (8) 0 311 0.7578 (8) 0.2761 (5) 0.4029 (4) 0.87 (9) 0 321 0.0126 (7) 0.0704 (4) 0.4326 (3) 0.53 (8) 0 401 0.4980 (8) 0.5178 (5) 0.6246 (3) 0.67 (8) 0 411 0.7384 (8) 0.3130 (5) 0.6582 (3) 0.71 (8) 0 112 0.1430 (7) 0.9111 (4) 0.1419 (3) 0.42 (8) 0 202 0.9498 (7) 0.4896 (5) 0.0804 (3) 0.60 (8) 0 212 0.2079 (7) 0.2968 (4) 0.1139 (3) 0.45 (8) 0 312 0.1459 (7) 0.0735 (4) 0.0313 (3) 0.40 (8) 0 322 0.4149 (7) 0.8743 (5) 0.0325 (3) 0.49 (8) 0 402 0.8781 (7) 0.3144 (5) 0.2224 (3) 0.59 (8) 0 412 0.1317 (7) 0.3144 (5) 0.2591 (3) 0.39 (8) 0 113 <td></td> <td></td> <td></td> <td></td> <td></td>					
0 311 0.7578 (8) 0.2761 (5) 0.4029 (4) 0.87 (9) 0 321 0.0126 (7) 0.0704 (4) 0.4326 (3) 0.53 (8) 0 401 0.4980 (8) 0.5178 (5) 0.6246 (3) 0.57 (8) 0 411 0.7384 (8) 0.3130 (5) 0.6582 (3) 0.71 (8) 0 112 0.1430 (7) 0.9111 (4) 0.1419 (3) 0.42 (8) 0 202 0.9498 (7) 0.4896 (5) 0.0804 (3) 0.60 (8) 0 212 0.2079 (7) 0.2968 (4) 0.1139 (3) 0.45 (8) 0 312 0.1459 (7) 0.0735 (4) 0.0031 (3) 0.30 (8) 0 322 0.4149 (7) 0.0735 (4) 0.0325 (3) 0.49 (8) 0 402 0.8781 (7) 0.3144 (5) 0.2224 (3) 0.59 (8) 0 412 0.1317 (7) 0.1078 (4) 0.2591 (3) 0.49 (8) 0 113 0.5288 (7) 0.7119 (5) 0.7472 (3) 0.52 (8) 0 203 0.3538 (7) 0.2870 (5) 0.7141 (3) 0.62 (8) 0 213 <td></td> <td></td> <td></td> <td>0.4832 (3)</td> <td>0.81 (9)</td>				0.4832 (3)	0.81 (9)
0 321	0 211	0.8188 (7)	0.4923 (4)	0.5173 (3)	0.42 (8)
0 401	0 311	0.7578 (8)	0. 2761 (5)	0.4029 (4)	0.87 (9)
0 411 0 7384 0 8 0 3130 0 5 0 0 6582 (3) 0 71 0 8 0 112 0 1430 0 71 0 9111 0 0 0 1417 (3) 0 42 0 8 0 202 0 9498 0 7 0 0 4896 0 5 0 0 804 (3) 0 0 6 0 0 212 0 2079 0 7 0 0 2968 0 0 0 1139 (3) 0 0 45 0 8 0 312 0 1459 0 7 0 0 2968 0 0 0 0 0 31 0 30 0 6 8 0 312 0 1459 0 7 0 0 2743 0 0 0 0 31 0 30 0 49 0 8 0 322 0 1419 0 7 0 0 3144 0 5 0 0 2224 (3) 0 57 0 8 0 402 0 8781 0 7 0 0 3144 0 5 0 0 2224 (3) 0 57 0 8 0 412 0 1317 0 7 0 1078 0 4 0 0 2591 (3) 0 39 0 8 0 113 0 5288 0 7 0 2179 0 5 0 0 6858 (3) 0 59 0 8 0 213 0 6228 0 7 0 0 2670 0 5 0 6858 (3) 0 54 0 8 0 313 0 5688 0 7 0 0 8757 0 0 6057 (3) 0 25 0 8 0 323 0 8152 0 7 0 0 8757 0 0 6828 (3) 0 25 0 8 0 313 0 5459 0 7 0 1212 0 0 0 8238 (3) 0 19 0 8 0 413 0 5459 0 7 0 1212 0 0 0 8238 (3) 0 21 0 80 0 314 0 7363 0 0 0 6950 0 0 3153 (3) 0 26 0 8 0 314 0 7363 0 0 0 6751 0 0 214 0 0 0 0 0 0 6751 0 0 2018 (3) 0 53 0 6 8 0 314 0 7461 0 7 0 6751 0 0 2018 (3) 0 37 0 8 0 324 0 2167 0 0 6751 0 0 7470 0 4 0 0 2313 0 37 0 8 0 324 0 2167 0 7 0 0 4740 0 4 0 2 231 0 37 0 8 0 324 0 2167 0 7 0 0 4740 0 4 0 2 231 0 37 0 8 0 324 0 2167 0 0 0 4740 0 4 0 0 2313 0 37 0 8 0 324 0 2167 0 0 0 3138 5 0 0 316 5 0 324 0 2167 0 0 3138 5 0 3138 0 3 0 37	0 321	0.0126 (7)	0.0704 (4)	0.4326 (3)	
0 112 0.1430 (7) 0.9111 (4) 0.1419 (3) 0.42 (8) 0 202 0.9498 (7) 0.4896 (5) 0.0804 (3) 0.60 (8) 0 212 0.2079 (7) 0.2968 (4) 0.1139 (3) 0.45 (8) 0 312 0.1459 (7) 0.0735 (4) 0.0031 (3) 0.30 (8) 0 322 0.4149 (7) 0.8743 (5) 0.0325 (3) 0.49 (8) 0 402 0.8781 (7) 0.3144 (5) 0.2224 (3) 0.59 (8) 0 412 0.1317 (7) 0.1078 (4) 0.2591 (3) 0.39 (8) 0 113 0.5288 (7) 0.7119 (5) 0.7472 (3) 0.52 (8) 0 203 0.3538 (7) 0.2870 (5) 0.6858 (3) 0.54 (8) 0 213 0.6228 (7) 0.9722 (5) 0.7141 (3) 0.62 (8) 0 323 0.8152 (7) 0.8757 (4) 0.6057 (3) 0.25 (8) 0 323 0.8152 (7) 0.6674 (5) 0.6349 (3) 0.46 (8) 0 403 0.3057 (7) 0.1212 (4) 0.8238 (3) 0.19 (8) 0 414 0.9426 (7)	0 401	0.4980 (8)	0.5178 (5)		
0 202					
0 212 0, 2079 (7) 0, 2968 (4) 0, 1139 (3) 0, 45 (8) 0 312 0, 1459 (7) 0, 0735 (4) 0, 0031 (3) 0, 30 (8) 0 322 0, 4149 (7) 0, 8743 (5) 0, 0325 (3) 0, 49 (8) 0 402 0, 8781 (7) 0, 3144 (5) 0, 2224 (3) 0, 59 (8) 0 412 0, 1317 (7) 0, 1078 (4) 0, 2591 (3) 0, 39 (8) 0 113 0, 5288 (7) 0, 7119 (5) 0, 7472 (3) 0, 52 (8) 0 203 0, 3538 (7) 0, 2870 (5) 0, 6858 (3) 0, 54 (8) 0 313 0, 6228 (7) 0, 8757 (4) 0, 6057 (3) 0, 25 (8) 0 323 0, 8152 (7) 0, 8757 (4) 0, 6057 (3) 0, 25 (8) 0 403 0, 3057 (7) 0, 1212 (4) 0, 8238 (3) 0, 19 (8) 0 413 0, 5459 (7) 0, 9142 (4) 0, 8582 (3) 0, 21 (8) 0 144 0, 9426 (7) 0, 5072 (4) 0, 8582 (3) 0, 21 (8) 0 204 0, 7363 (7) 0, 5072 (4) 0, 8582 (3) 0, 21 (8)					
0 312					
0 322 0,4149 (7) 0,8743 (5) 0,0325 (3) 0,49 (8) 0 402 0,8781 (7) 0,3144 (5) 0,2224 (3) 0,59 (8) 0 412 0,1317 (7) 0,1078 (4) 0,2591 (3) 0,59 (8) 0 113 0,5288 (7) 0,7119 (5) 0,7472 (3) 0,52 (8) 0 203 0,3538 (7) 0,2870 (5) 0,6858 (3) 0,54 (8) 0 213 0,6228 (7) 0,0922 (5) 0,7141 (3) 0,62 (8) 0 313 0,5688 (7) 0,8757 (4) 0,6057 (3) 0,25 (8) 0 323 0,8152 (7) 0,6674 (5) 0,6349 (3) 0,46 (8) 0 403 0,3057 (7) 0,1212 (4) 0,8238 (3) 0,19 (8) 0 413 0,5459 (7) 0,9142 (4) 0,8582 (3) 0,19 (8) 0 114 0,9426 (7) 0,5072 (4) 0,3444 (3) 0,36 (8) 0,214 0,098 (7) 0,8920 (5) 0,3153 (3) 0,26 (8) 0,214 0,098 (7) 0,8920 (5) 0,3153 (3) 0,26 (8) 0,214 0,9461 (7) 0,6751 (5) 0,2018 (3) 0,63 (8) 0,344 0,9461 (7) 0,6751 (5) 0,2018 (3) 0,63 (8) 0,344 0,9461 (7) 0,6751 (5) 0,2018 (3) 0,63 (8) 0,344 0,9461 (7) 0,6751 (5) 0,2018 (3) 0,63 (8) 0,404 0,6813 (7) 0,9138 (5) 0,4231 (3) 0,57 (8)					
0 402					
0 412 0,1317 (7) 0.1078 (4) 0.2591 (3) 0.39 (8) 0 113 0,5288 (7) 0.7119 (5) 0.7472 (3) 0.52 (8) 0 203 0.3538 (7) 0.2870 (5) 0.6958 (3) 0.54 (8) 0 213 0.6228 (7) 0.0922 (5) 0.7141 (3) 0.62 (8) 0 313 0.5688 (7) 0.8757 (4) 0.6057 (3) 0.25 (8) 0 323 0.8152 (7) 0.6474 (5) 0.6349 (3) 0.46 (8) 0 403 0.3057 (7) 0.1212 (4) 0.8288 (3) 0.19 (8) 0 413 0.5459 (7) 0.9142 (4) 0.8582 (3) 0.21 (8) 0 114 0.9426 (7) 0.5072 (4) 0.3444 (3) 0.36 (8) 0 204 0.7363 (7) 0.0850 (4) 0.2825 (3) 0.26 (8) 0 214 0.0098 (7) 0.8920 (5) 0.3153 (3) 0.56 (8) 0 314 0.9461 (7) 0.6751 (5) 0.2018 (3) 0.63 (8) 0 324 0.2167 (7) 0.4740 (4) 0.2313 (3) 0.56 (8)					
0 113 0.5288 (7) 0.7119 (5) 0.7472 (3) 0.52 (8) 0 203 0.3538 (7) 0.2870 (5) 0.6858 (3) 0.54 (8) 0 213 0.628 (7) 0.0922 (5) 0.7141 (3) 0.62 (8) 0 313 0.5688 (7) 0.8757 (4) 0.6057 (3) 0.25 (8) 0 323 0.8152 (7) 0.6674 (5) 0.6349 (3) 0.46 (8) 0 403 0.3057 (7) 0.1212 (4) 0.8238 (3) 0.17 (8) 0 413 0.5459 (7) 0.9142 (4) 0.8582 (3) 0.21 (8) 0 114 0.9426 (7) 0.5072 (4) 0.3444 (3) 0.36 (8) 0 204 0.7363 (7) 0.0850 (4) 0.2825 (3) 0.26 (8) 0 214 0.0098 (7) 0.8920 (5) 0.3153 (3) 0.56 (8) 0 314 0.9461 (7) 0.6751 (5) 0.2018 (3) 0.56 (8) 0 324 0.2167 (7) 0.4740 (4) 0.2313 (3) 0.37 (8) 0 404 0.6813 (7) 0.9138 (5) 0.4231 (3) 0.53 (8)					
0 203					
0 213					
0 313					
0 323					
0 403					
0 413					
0 114					
0 204					
0 214					
0 314					
0 404 0.6813 (7) 0.9138 (5) 0.4231 (3) 0.53 (8)			0.6751 (5)		
	0 324	0.2167 (7)			
Q 414 0.9324 (7) 0.7073 (5) 0.4601 (3) 0.52 (8)	0 414	0. 9324 (7)	0.7073 (5)	0.4601 (3)	0.52 (8)

Note. BEQ was calculated as $8\pi^2\tilde{u}^2$ where \tilde{u}^2 is the refined mean square thermal displacement.

residuals were $R_{\rm F}=0.096$ on all measurements $R_{\rm F}=0.044$, $wR_{\rm F}=0.036$ on the 2220 observed ones. The weighted residual quoted was calculated with counting statistics weights after unit weight refinement.

The refinements of the structures at 298

and 115 K were performed by means of full matrix least-squares with counting statistics weights and anisotropic thermal motion. The final residuals are $R_F = 0.024$ and $wR_F = 0.033$ at 298 K and $R_F = 0.021$, $wR_F = 0.026$ at 115 K. The final atomic positions

TABLE IIc Atomic Parameters X, Y, Z and BEQ at 115 K

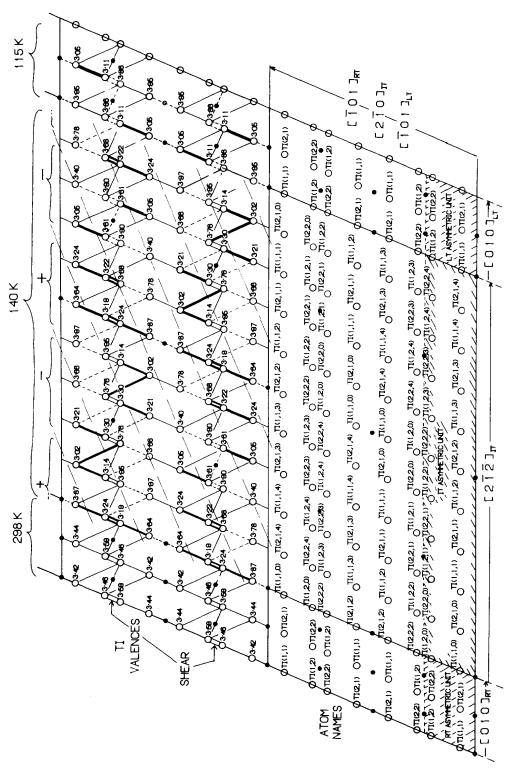
	x	Y	Z	BEQ
TI 11	0. 01623(8)	0. 04010(6)	0. 065651(23)	0, 251 (20)
TI 12	0.09261(9)	0.04084(6)	0. 204340(23)	0. 242(21)
TI 21	0.03165(8)	0. 52671(6)	0.068268(22)	0. 246(20)
TI 22	0.08833(8)	0.55111(6)	0. 193794(23)	0.240(21)
0 11	0.8895 (4)	0.6604 (3)	0.14219 (10)	0.33 (9)
0 20	0.0583 (4)	0.3288 (3)	0.01655 (10)	0.37 (9)
0 21	0.0221 (4)	0. 2993 (3)	0.16871 (10)	0.32 (9)
0 31	0.6336 (4)	0.8480 (3)	0.07434 (10)	0.34 (9)
0 32	0.6171 (4)	0.8346 (3)	0. 22258 (10)	0.33 (9)
0 40	0.3938 (4)	0.1728 (3)	0.06198 (10)	0.35 (9)
0 41	0.4435 (4)	0.1748 (3)	0.19785 (10)	0.37 (10)

TABLE OF U(I, J) OR U VALUES *100.

	U11(U)	U22	U33	U12	U13	U23
TI 11	0.359(11)	0.334(11)	0.312(10)	0. 253(10)	-0. 266(10)	-0, 223(9)
TI 12	0.318(11)	0.336(10)	0.314(10)	0.241(10)	-0.252(9)	-0.219(9)
TI 21	0.321(11)	0.320(11)	0.272(10)	0.233(10)	-0.219(10)	-0.192(9)
TI 22	0.272(11)	0.309(10)	0.300(10)	0.206(10)	-0, 214(9)	-0.198(9)
0 11	0.44 (5)	0.44 (5)	0.39 (4)	0.31 (4)	-0.31 (4)	-0.27 (4)
0 20	0.62 (5)	0.49 (5)	0.54 (5)	0.43 (4)	-0.48 (4)	-0.38 (4)
0 21	0.43 (5)	0.39 (5)	0.45 (4)	0.30 (4)	-0.34 (4)	-0.28 (4)
0 31	0.35 (5)	0.47 (5)	0.41 (4)	0.25 (4)	-0.30 (4)	-0.30 (4)
0 32	0.41 (5)	0.39 (5)	0.38 (4)	0.27 (4)	-0.29 (4)	-0.26 (4)
0 40	0.36 (5)	0.48 (5)	0.40 (4)	0.27 (4)	-0.29 (4)	-0.29 (4)
0 41	0.43 (5)	0.47 (5)	0.45 (4)	0.30 (4)	-0.35 (4)	-0.29 (4)

Note. BEQ is the arithmetic mean of the principal axes of the thermal ellipsoid. Estimated standard deviations refer to the last digit printed.

are listed in Table II together with equivalent isotropic thermal motion. Table III gives the Ti valences as derived from the Ti-O distances using bond-valence summation with the bond length-bond strength relationship from (11) applied as in (5).


Discussion

The observation of the fivefold superstructure clearly establishes the existence of a long-range charge localization.

¹ See NAPS document No. 04168 for 66 pages of supplementary material. Order from ASIS/NAPS, Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance \$4.00 for microfiche copy or for photocopy, \$7.75 up to 20 pages plus \$.30 for each additional page. All orders must be prepaid. Institutions and organizations may order by purchase order. However, there is a billing and handling charge for this service of \$15. Foreign orders add \$4.50 for postage and handling, for the first 20 pages, and \$1.00 for additional 10 pages of material. Remit \$1.50 for postage of any microfiche orders.

The superstructure reflections are so weak that the background reduction of monochromatic versus filtered radiation might be essential to the photographic observation of the reflections and may explain why they were overlooked in Ti_4O_7 (2) and Ti₅O₉ (10) in spite of the fact that such a possibility was investigated. It is also possible that, due to the different transport agents and growth rates used in the preparation of the crystals (Cl₂ vs TeCl₄), the long-range order which gives in the present investigation sharp diffraction spots might correspond to shorter-range order in other samples giving wider, less dense photographic spots that would be more difficult to see.

Table IV shows the cell data from (2) and (14), respectively, for pure and V-doped Ti_4O_7 together with the results on the present sample. Although the sample used here was not analyzed, it comes from a series of similar preparations (15) where the

on the observed Ti-O distances. Single lines between the Ti atoms symbolize edge-sharing, double lines the face-sharing in the shear plane. Thick lines indicate a shortening of the corresponding Ti-Ti distance by more than 0.05 Å with respect to the RT phase, dotted lines a similar lengthening. The oblique Fig. 1. Projection along a_{RT} of a (101) $_{RT}$ slab of edge- and face-sharing TiO, octahedra for the three phases studied. The origin is at the lower left comer in the three cases. For a representation of the octahedra themselves see Ref. (7). The Ti valences shown were obtained by bond-valence summation (11) dotted lines at IT limit the slabs designed by (+) and (-) where the Ti valences are respectively seen to increase and decrease with respect to the RT distribution.

Inversion centers.

IABLE III Ti-Ti Distances

									٠	, 0		J1 \
115 K		Ti(1,1)-Ti(1,1) 3.008	Ti(1,1)-Ti(1,2) 3.063	Ti(1,2)-Ti(2,2) 2.861	Ti(2,1)-Ti(2,1) 3.113	Ti(2,1)-Ti(2,2) 2.787		Ti(1,1)-Ti(1,2) 3.093	Ti(1,2)-Ti(1,2) 3.391	Ti(2,1)-Ti(2,2) 3.143	Ti(2,2)-Ti(2,2) 3.266	
		Ti(1,1,4)-Ti(1,1,1) 2.908	Ti(1,1,4)-Ti(1,2,4) 2.943	Ti(1,2,4)-Ti(2,2,3) 2.820	Ti(2,1,4)-Ti(2,1,0) 2.898	Ti(2,1,4)-Ti(2.2,4) 2.888		Ti(1,1,4)-Ti(1,2,4) 3.129	Ti(1,2,4)-Ti(1,2,4) 3.282	Ti(2,1,4)-Ti(2,2,3) 3.026	Ti(2,2,4)-Ti(2,2,3) 3,269	
		Ti(1,1,3)-Ti(1,1,2) 2.917	Ti(1,1,3)-Ti(1,2,3) 3.118	Ti(1,2,3)-Ti(2,2,4) 2.839	Ti(2,1,3)-Ti(2,1,1) 2.932	Ti(2,1,3)-Ti(2,2,3) 3.122		Ti(1,1,3)-Ti(1,2,0) 3.128	Ti(1,2,3)-Ti(1,2,0) 3,313	Ti(2,1,3)-Ti(2,2,4) 3.216	Ti(2,2,3)-Ti(2,2,4) 3.269	
140 K	In the [101]RT chains	Ti(1,1,2)-Ti(1,1,3) 2.917	Ti(1,1,2)-Ti(1,2,2) 2.905	Ti(1,2,2)-Ti(2,2,0) 2.737	Ti(2,1,2)-Ti(2,1,2) 2.960	Ti(2,1,2)-Ti(2,2,2) 2.896	In the [010] _{RT} chains	Ti(1,1,2)-Ti(1,2,1) 3.104	Ti(1,2,2)-Ti(1,2,1) 3.277	Ti(2,1,2)-Ti(2,2,0) 3.090	Ti(2,2,2)-Ti(2,2,0) 3.229	
		Ti(1,1,1)-Ti(1,1,4) 2.908	Ti(1,1,1)-Ti(1,2,1) 3.071	Ti(1,2,1)-Ti(2,2,1) 2.900	Ti(2,1,1)-Ti(2,1,3) 2.932	Ti(2,1,1)-Ti(2,2,1) 2.919		Ti(1,1,1)-Ti(1,2,2) 3.097	Ti(1,2,1)-Ti(1,2,2) 3.277	Ti(2,1,1)-Ti(2,2,1) 3.094	Ti(2,2,1)-Ti(2,2,1) 3.298	
		Ti(1,1,0)-Ti(1,1,0) 3.040	Ti(1,1,0)-Ti(1,2,0) 2.937	Ti(1,2,0)-Ti(2,2,2) 2.746	Ti(2,1,0)-Ti(2,1,4) 2.898	Ti(2,1,0)-Ti(2,2,0) 3.114		Ti(1,1,0)-Ti(1,2,3) 3.068	Ti(1,2,0)-Ti(1,2,3) 3.313	Ti(2,1,0)-Ti(2,2,2) 3.204	Ti(2,2,0)-Ti(2,2,2) 3.229	
298 K		Ti(1,1)-Ti(1,1) 2.941	Ti(1,1)-Ti(1,2) 3.018	Ti(1,2)-Ti(2,2) 2.812	Ti(2,1)-Ti(2,1) 2.893	Ti(2,1)-Ti(2,2) 3.020		Ti(1,1)-Ti(1,2) 3.071	Ti(1,2)-Ti(1,2) 3.281	Ti(2,1)-Ti(2,2) 3.114	Ti(2,2)-Ti(2,2) 3.239	

Note. The standard deviations on the Ti-Ti distances are 0.001 Å at 298 and 115 K and 0.002 Å at 140 K.

Ti₇O₁₃ and Ti₈O₁₅ samples were analyzed and had a total impurity content lower than 0.1% with 65 ppm of Zr as the largest transition metal impurity. The present sample is therefore chemically closer to the sample in (2) than to the one in (14). The cell data from the three samples agree well at RT and IT. As for the LT phase, a good agreement is observed between the lattice parameters of the present sample and the corresponding ones for $(Ti_{0.9975}V_{0.0025})_4O_7$, while the LT cell data from Ref. (2) appear to be discrepant. The latter data show no significant change at the LT transition, a surprising observation in view of the dramatic structural change that is observed to occur. It has been shown that the incorporation of more than 0.35\% of vanadium suppresses the LT transition (15). The cell data of Ref. (2) were obtained by the use of a specially prepared powder for which there was no experimental evidence that it transformed at the lower transition. It is conceivable that the powder used in Ref. (2) did not undergo the LT transition because of stoichiometric problems.

The variation of the lattice parameters and unit cell volume as a function of temperature for a $(Ti_{0.9975}V_{0.0025})_4O_7$ sample showed two discontinuities corresponding to IT and LT transitions, respectively (14). These data were obtained on the single crystal used for structural work. The present sample is not ideally pure, however the new values of the lattice parameters, reported in Table I, strongly indicate that equivalent discontinuities should exist for totally pure Ti_4O_7 .

The 298 K (RT) and 115 K (LT) structures are essentially as described in (2) except that the distances and angles in the LT phase differ slightly due to cell parameter change. However, the bond valence summation (11, 5) supports the previous conclusion (2) that all the Ti valences at RT are close to 3.5 while they separate into 3⁺ and 4⁺ at LT.

		Ti ₄ O ₇ (2)		$(Ti_{0.9975}V_{0.0025})_4O_7$ (14)			
	298 K	140 K	120 K	298 K	135 K	100 K	
 a (Å)	5.593	5.590	5.591	5.594	5.594	5.624	
b (Å)	7.125	7.128	7.131	7.122	7.130	7.198	
$c(\mathring{A})$	20.425	20.380	20.394	20.419	20.352	20.253	
α (°)	67.63	67.70	67.68	67.70	67.77	67.89	
β (°)	57.14	57.36	57.36	57.16	57.43	57.70	
γ (°)	108.73	108.89	108.89	108.76	109.02	109.68	
V (Å ³)	464.56	464.90	465.38	464.48	464.93	466.58	

TABLE IV
Cell Parameters from Refs (2, 14) in the Present System of Axes

On the contrary, the 140 K structure is radically different from the one previously reported (2). As has been observed for Ti_6O_{11} , we observe here a long-range order of the Ti valences shown in Fig. 1 and a Ti–Ti bonding pattern whose distances are given in Table IV. The Ti valences are found to be alternately 3^+ and 4^+ in adjacent slabs parallel to $(10\overline{2})_{IT}$ which corresponds to the $(25\overline{1})$ plane of the pseudorutile lattice. At the contact between the slabs, isolated ions carry intermediate charges. This situation is different from that found in Ti_6O_{11} , where $Ti^{3.5+}$ ions form pairs.

In the LT phase of Ti₄O₇ the cation charges are ordered in such a way as to form alternate layers of Ti3+ and Ti4+ octahedra perpendicular to the [010] pseudorutile direction, that is parallel to the hexagonal close-packed layers of oxygen (13). At the LT transition, the alternate slabs of Ti3+ and Ti4+ octahedra, which in the IT phase are parallel to the (251) pseudorutile plane and are two-octahedra thick, swing around and become parallel to the (010) pseudorutile plane. In addition the two-octahedra thick slabs become monolayers.

The positive correlation between the change in Ti-Ti distance in the rutile-like

chains and the change in ionic repulsion between the Ti ions noticed in Ti₆O₁₁ are seen here as well and manifest themselves by the compression of the 3⁺ slabs and the extension of the 4⁺ ones. This peculiar pattern of Ti atom displacement is in turn responsible for the above-mentioned modulation of the diffracted intensities.

Magnetic susceptibility and ESR measurements point at a single magnetic discontinuity at the higher transition (3) where complete pairing of Ti3+ ions appears to occur. Comparison with previously reported structural results which indicated a somewhat disordered charge localization led to interpret the 140 K phase as a "liquid of bipolarons" (3, 13) and to ascribe its conductivity to bipolaronic mobility. The present results show that the Ti valences are essentially ordered by the modulation and Ti³⁺ pairing is seen. The sharpness of the superstructure diffraction peaks indicates that long-range order of the pairs exists over at least 10³ Å. The present results are therefore inconsistent with the hypothesis of independently mobile bipolarons. The interpretation of the conductivity in this phase should therefore be revised.

The present results are consistent with a large drop in the spin count at the higher transition, but another drop is expected at the lower transition because the Ti³⁺ pairing is seen to be incomplete at IT. Although the structural and magnetic results could be reconciled by accepting static or local dynamic disorder of the pairs in the IT phase (but not long-range dynamic disorder which would preclude the occurrence of sharp superstructure reflections), we rather suggest that an accurate spin count should be performed on a well characterized sample of pure Ti₄O₇ at the lower transition before interpreting the structural results in terms of the magnetic ones.

The similarity between the low-temperature behaviors of Ti_4O_7 and Ti_6O_{11} which prompted this study is only partial at the microscopic level. Although the transition temperatures are strikingly similar and the ordering of Ti valences seems to be the driving mechanism in both cases, the Ti_2^{7+} clusters which dominate the magnetic behavior of Ti_6O_{11} (12) are not seen in Ti_4O_7 . The pairing of Ti^{3+} ions which is observed to be complete within experimental error at 115 K is apparently partial at 140 K.

It is usually observed that on cooling, phase transitions are accompanied by a loss of symmetry elements. For instance, the two transitions in Ti_6O_{11} and the IT transition in Ti_4O_7 follow this rule, in each case the multiplicity of the superstructure increases on cooling. On the contrary the LT transition in Ti_4O_7 violates it as the superstructure occurs on heating.

Acknowledgments

We thank Dr. Pierre Strobel for the single crystal used here and Dr. L. D. Calvert and Dr. C. M. Hurd for discussions and encouragements.

References

- A. D. INGLIS, Y. LE PAGE, P. STROBEL, AND C. M. HURD, J. Phys. C. Solid State Phys. 16, 317 (1983).
- M. MAREZIO, D. B. MCWHAN, P. D. DERNIER, AND J. P. REMEIKA, J. Solid State Chem. 6, 213 (1973).
- 3. S. Lakkis, C. Schlenker, B. K. Chakraverty, R. Buder, and M. Marezio, *Phys. Rev. B* 14, 1429 (1976).
- Y. LE PAGE AND P. STROBEL, J. Solid State Chem. 44, 273 (1982).
- Y. LE PAGE AND P. STROBEL, J. Solid State Chem. 47, 6 (1983).
- Y. LE PAGE AND P. STROBEL, submitted for publication.
- Y. Le Page and P. Strobel, J. Solid State Chem. 43, 314 (1982).
- 8. P. M. DE WOLFF, T. JANSSEN, AND A. JANNER, Acta Crystallogr. A 37, 625 (1981).
- G. GERMAIN, P. MAIN, AND M. M. WOOLFSON, Acta Crystallogr. A 27, 368 (1971).
- M. MAREZIO, D. TRANQUI, S. LAKKIS, AND C. SCHLENKER, Phys. Rev. B 16, 2811 (1977).
- W. H. ZACHARIASEN, J. Less-Common Metals 62, 1 (1978).
- S. A. FAIRHURST, A. D. INGLIS, J. R. MORTON,
 K. F. PRESTON, AND Y. LE PAGE, Chem. Phys. Lett. 95, 444 (1983).
- C. Schlenker and M. Marezio, *Philos. Mag. B* 42, 453 (1980).
- J. L. HODEAU AND M. MAREZIO, J. Solid State Chem. 29, 47 (1979).
- S. AHMED, C. SCHLENKER, AND R. BUDER, J. Magn. Mater. 7, 338 (1978).